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1.0 INTRODUCTION

1.1 Program Identification
This report constitutes data item A002, Final Technical Report, of the contract Data

Requirements List for Contract No. DAAH01-95-C-R013, and represents work done under
Phase-1I of the following DARPA SBIR:

DARPA93-032 TITLE: Synthetic Dolphin Blubber Compliant Coatings
CATEGORY: 6.2 Exploratory Development

OBJECTIVE: Develop synthetic materials based on the viscoelastic properties of live dolphin
blubber to act as a compliant coating for underwater vehicles to reduce drag as well as noise. No
experimentation with live dolphins will be conducted as part of this effort.

DESCRIPTION: The dolphin has a remarkable skin and blubber which minimizes both drag and
flow noise. Recent studies of fast swimming dolphins in sea water show little phosphorescent
activity due to the reduced turbulent boundary layer. Recent materials investigations have shown the
unusual properties of the blubber. The purpose of this task is to synthesize the material so it will
exhibit properties similar to those of live dolphin blubber.

Phase I: Develop, fabricate, and test synthetic blubber materials. Examine candidate coatings and
measure viscoelastic properties. Three coatings will be selected for full-scale tests.

Phase II: Fabricate, install, and test the coatings developed in Phase I on undersea vehicles
approximately 36 feet in length and 44 inches in diameter.

An undersea vehicle was not available for the Phase-II studies, nor would it have been within
the budget constraints. Candidate "synthetic blubber" compositions were tested for drag
reduction by means of a Rotating Disc Apparatus, as reported hereinafter.

1.2 Phase ]l Program Results [1

The frequency dependence from 2 to 1000 Hz of the complex shear compliance
(J* =J' -iJ"), or shear impedance (G* = G'+iG"), were measured for 10 synthetic materials.
Preliminarily, 3 polymer systems were identified as potential candidates compliant coatings with
viscoelastic properties comparable with previous measurements on blubber. These were:

e Polyvinyl Chloride-Di-2-Ethylhexyl Phthalate (PVC-DOP)
* Polydimethyl Siloxane (PDM)
e Polyvinyl Chloride-Dimethyl Thianthrene (PVC-DMT)

For applications as coatings on vehicles, these candidate systems are considered to be too
"tender” . . . as, indeed, would be the case for blubber, itself. The tear and penetration
resistance is not sufficient for the operational environment of, for example, AUVs.
Consequently, in Phase II composite systems were targeted, including: (a) sheathed coatings
(e.g. a thin tough elastomer "skin" bonded to the "matched" gel coatings); (b) filled matrix
systems (e.g. open-cell sponge filled with "matched” gels); and (c) a combination of (a) and (b).
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A number of commercially available damping materials were measured but were found to
be too stiff to match the driving point impedance of blubber. These included Sorbothane and
several synthetic and natural rubber stocks.

An important adjunct to Phase II of this SBIR program would be access to Rotating Disk
Apparatus in order to evaluate the actual drag-reduction performance of candidate compliant
coatings before application to "test-bed" AUV. This apparatus was subsequently developed
by KILDARE under a separate contract, but only became available for this Phase-II effort
essentially after the nominal termination of this Contract. Subsequent measurements with
the Rotating Disc Apparatus have delayed the completion of this Final Report.

3 Ba und

After some 40 years of extensive investigations, the issue of whether or not compliant
surfaces can reduce hydrodynamic drag remains unresolved [2]. Based on Kramer's [3]
initial identification of the dolphin's skin as the basic mechanism, most of the past work has
concentrated on thin (~ 0.3 cm) compliant coatings. The various proposed hydrodynamic models
[4,5] suggest that the compliant surface deflects in some preferred manner and interacts with
the boundary layer Tollmein-Schlicting waves so as to reduce their stability, thereby delaying the
transition from laminar to turbulent flow. Surprisingly, in spite of the extensive past work by
many investigators, in most cases the compliant surface being studied has not been adequately
characterized by measurement of its dynamic complex viscoelastic properties.

Most of the preceding investigations of hydrodynamic flow over compliant surfaces have
been deficient in one or more of the following areas:

» Concentration on the thin skin of the dolphin rather than the thick blubber.

» Not characterizing the compliance of the surface by measurements of the
dynamic complex shear compliance (J* =J' - iJ") and, hence, the driving-point
shear impedance.

= Lack of a convenient laboratory method of measuring the drag, with sufficient
precision and under controlled conditions.
Our studies address each of these deficiencies.

4 The Matc| Shear o]

The "Matched Shear Impedance Hypothesis for Compliant Layer Control of Boundary
Layer Turbulence" takes a completely different approach to the problem than the normal
hydrodynamic treatment . . . more akin to "acoustics” than "hydrodynamics" (Figure-1). This
model's [6,7] basic postulates are:
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Fg = TBL Shear Force Generator
Iy = Rotational Inertia of Vortices

Ry = Viscous Losses in Fluid

R = Viscous Losses in Boundary Sub-layer
M = Unit Mass of Compliant Layer

J' = Elastic Compliance of Compliant Layer
J* = Loss Compliance of Compliant Layer

Equivalent Circuit

Figure-2

Zr = Terminal Impedance

= Impedance "Looking Into” TBL (Generator

Internal Impedance)

Z, = Impedance *Looking Into® Compliant Layer

(Load Impedance)

Ug = Fluctuating Component of Flow Velocity
Us = Fluctuating Velocity Component in Boundary

Sub-layer

Up = Fluctuating Velocity in Compliant Layer
Fg = Shear Force Applied to Compliant Layer
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«  The Turbulent Boundary Layer (TBL) is viewed as a fluctuating "Shear Stress
Generator" coupled to the "Compliant Layer Load" through the viscous inner

boundary layer.

e« To transfer appreciable energy (power) from the TBL Shear Stress Generator to
the Compliant Layer Load, the Shear Impedance of the Load must be "matched"
to the Shear Impedance of the TBL Generator.

«  Under Matched-Load conditions, the build-up of the fluctuating energy of
incipient turbulence is reduced by energy flow into the comp iant layer where it is
dissipated by losses in the viscoelastic compliant layer material, thus delaying the
onset of turbulence.

»  Dolphin blubber represents justsucha matchedJoad with the required high loss

tangent.
Figure-2 shows an Equivalent Circuit representation of the Matched Shear Impedance

Hypothesis.

20 ETHO
2.1 Viscoelastic Measurement Method
An antomated dynamic mechanical system for complex shear compliance, J* =J' -iJ",
and shear modulus, G* =G’ + iG" = 1/7*, loss tangent, J'/J' = G"/G' and shear wave
velocity and attenuation was used to get these parameters for dolphin blubber and the compliant
coating materials. The system is one in which the complex mechanical impedance
(forcervelocity) of arigid plate, with fine wire embedded coils suspended transversely in

permanent magnet fields, is obtained in terms of a measured transfer electrical admittance
(current/emf). From calibration values of the mechanical impedance of the plate alone, ZmP‘

and an increased impedance yA mt» With a pair of thin disc-shaped samples pressed against the
plate, the sample impedance})y subu'?ction is,
Zms=Zm-Z'mp- - - (1)

for samples of cross sectional area, A, and thickness, h, the complex shear compliance is then,

P iV g AR2RE o Q)

where ¥ s =1/ Z" s and f = the vibration frequency. The elastic component, J , represents

the in-phase component of shear strain/stress, while the viscous J component, T is delayed,
90° out of phase strain/stress. This system has a frequency range from 2 to 10,000 Hz a
temperatures from - 50 to 150° C. A complete description is givenin several publications
891

22 Rotating Disc aratus
Pioneering work in utilizing rotating disc apparatus for studying flow over compliant
surfaces was done by Hansen & Hunston, [10]. Their apparatus used thin discs, ~ 0.98 cm
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thick by ~ 20.9 cm diameter, and covered a range of Re = 10% 1o Re = 5x 105. The compliant
coatings studied were thin (~ 0.34 cm) soft plastisols (J*| = 3 x 10 cm?/dyne) that developed
surface instabilities, accompanied by a marked increase in torque (drag) in the vicinity of

Rez 5x 104, Another set of rotating disc experiments were made by Chung and Merrill, [11]
on (thin) coatings of a (soft) silicone rubber with a diluent silicone oil. A pronounced rippling
of the surface was accompanied by marked increase in drag in the vicinity of Re = 104,

The isometric sketch of Figure-3 shows the Rotating Disc Apparatus available for this
study. It consists of a variable speed motor connected, by means of a pulley-belt drive, to a
shaft mounted disc, rotating in a water-bath. The drive-shaft has an in-line torque/rpm sensor
whose output are read by a digital meters. The equipment measures both torque (0-100 lbs-in)
and rotational speed (0 - 10,000 rpm). Both analogue (+ 5 volt) and digital (RS-252-C) outputs
are available, in addition to the panel meters.

Figure-4 shows the design of the rotating discs. The basic rigid (aluminum) reference
disc is 20 cm in diameter and 4.5 cm thick, with edges having a radius of ~ 0.16 cm. The
molded compliant layered discs have the same outside dimensions and surface-smoothness as
the rigid-reference discs; but, three different thicknesses of compliant layers: viz. 0.5 cm,
1.0 cm, and 2.0 cm. This means that, for a given compliant material, there willbe a4 to |
range in the "static" shear deflection driving-point shear impedance. The effect of the surface
compliance (i.e., the driving point impedance), if any, will be the difference between the torque
of the rigid-reference disc and that of the compliant-layered disc. Significant differences in drag
(torque) as small as a few percent can be determined.

In summary, the Rotating Disc Apparatus has the Apparatus has the following measurement

capabilities:

Rotating speed range; 60 rpm to 2250 rpm
Torque range; 0 - 100 Ib-in

Compliant layer thickness; 0.5,1.0,& 2.0 cm
Rotating discs, 4.5 cm thick x 20 cm diameter
Reynold's number range; 5x 104 to 2.25 x 106
Drag (torque) measurement precision; ~ + 0.5%
Measurements at room temperature, only

2.3 Rotating Disc Calibration

One of the problems resulting from the required thickness of the rotating discs, particularly at
the higher rotational speeds, is that the rotating disc "stirs” the bath (30" D x 24" H) into a general
rotating water mass. the relative velocity of the rotating discs through the water is reduced,
accompanied by a reduction in torque (drag). The Himmelstein Precision Torque Meter Readout
(Model 66042) and In Line Torque Sensor (Model MCRT 2901 T) has an A/D conversion time of
only 30 microseconds. Stability is achieved after one second, the same time base upon which the
instrument output is gated. Sampling occurs as an integration of the output over each second.
Measurements of torque vs time indicated that even at the highest rotational speeds, the torque
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remained substantially constant in a2 - 4 second window and then begins to decay as the water
mass rotation sets in. In effect, the disc, driven by the 2 hp electric motor, reaches it terminal
rotating speed in ~ 1 second. Measurements made in the 2 - 4 second period following, represents
the true rotational speed and torque through quiescent water. We, therefore, adopted the "2nd-
second" measurement method throughout our studies.

Table-I shows a series of torque measurements made on the thick rigid-reference
disc, using the "2 second" method. It should be noted that these are completely independent
measurements starting with a non-rotating disc in quiescent water. The mean of the 10 runs
was T = 19.33 Ib-in, with a standard deviation of O = 0.068. The maximum spread was only
0.20 1b-in, or ~ + 0.5%. This represents a measurement precision not often encountered in
hydrodynamic drag measurements.

RPM TOROQUE_(Ib_in) STATS
1000 19.3 19.33 Mean
1000 192 0.0675 Std Dev
1000 19.3 19.4 Max
1000 193 19.2 Min
1000 19.4 0.200 Spread
1000 19.3

1000 19 4

1000 19.4

1000 19.3

1000 19.4

¢

24 Torque Coefficient
The customary dimensionless torque coefficient is:
Cin=—A— (1)
12p W*R?
and Reynold's number for the rotating disc is:

(R?) (@) )

Re= ——
where:
Cm = torque coefficient

T = measured torque

r = density of water
W = rotational speed
R = disc radius

Re = Reynold's number
V = kinematic viscosity of water
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Figure-5 shows the torque vs. rpm calibration of the rigid disc. Transition from laminar to
turbulent flow occurs at @ =210 rpm, which corresponds to a peripheral speed of V = 4.3
knots. Figure-6 shows a corresponding rigid disc drag coefficient vs. Reynolds No., with
laminar-to-turbulent flow atRe = 2.2 x 10°.

In the laminar flow regime:

Cm (laminar) = (3.9 x 106) (Re -1 4), (3)
and in the turbulent regime:
Cp (turbulent) = (2.5 x 103) (Re -0.8) 4)

These numerical equations characterize the hydrodynamic drag (torque) on the rigid reference disc.

3.0 ROTATING DISC DRAG MEASUREMENTS
3.1 Representative Compliant Materials

Figure-7 shows the shear compliance |J*| vs. frequency for some representative compliant
materials from a companion study [12]. The materials are identified as follows:

PDM - 10:1 polymercuring agent polydimethyl siloxane gel
BLB - dolphin blubber

PMS - polymethy! siloxane gel/polyurethane foam composite
15SILR - Shore A 15 durometer silicone rubber

35NEOR - Shore A 35 durometer Neoprene rubber
55NEOR - Shore A 55 durometer Neoprene rubber

32 Dr orque) Measurements

Rotating discs measurements on the Neoprene rubbers showed no perceptible drag
differences from the drag measurements on the reference rigid discs. The molded 15-
durometer silicone rubber discs also showed no perceptible delay of turbulence, but surface
flaws may have masked any effect, and this sample will have to be remolded and rerun. No
rotating disc samples have yet been made with the PDM (polydimethyl silicone gel), but with
a complex shear module of |J *| =2 x 10-5 cm / dyne, surface deflections can be expected to
increase the drag.

Figure-8 shows the comparison of the transition from laminar to turbulent regimes for the
rigid reference disc and the PMS (polymer gel-foam) coated disc. The transition takes place at
® = 210 rpm, corresponding to Re= 2.2 x 1075, for the rigid disc. The transition is delayed to
® = 260 rpm, corresponding to Re= 2.7 x 105, for the PMS disc. These preliminary
measurements were made with a gel-foam compliant layer not fully matched to blubber . . .
|z 10 x 10-7 cm? / dyne for PMS as compared to [I'| = 20 x 10-7 cm? / dyne for BLB.
Moreover, the surface roughness of the gel-foam was excessive and sample preparation

techniques will have to be improved.
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4.0 CLOSING REMARKS

The gel-foam sample transition from the laminar to the turbulent regime at () = 260 rpm
corresponds to a peripheral velocity of v = 5.8 knots. A fully matched, smooth sample could be
expected to extend this delay of the onset of turbulence even further. Operational dolphins typically
cruise at ~ 10 knots [13]. If we assume that this represents an "energy conserving" speed
corresponding to the laminar-turbulent transition, a smooth fully matched compliant coated disc
might be expected to extend the transition further to ~ 448 rpm, corresponding to the dolphin
cruising speed of ~ 10 knots, or 2 Reynolds Number, Re = 4.7 x 10°.

These preliminary rotating disc measurements appear to support the "Matched Shear Impedance
Hypothesis for Compliant Boundary Layer Control of Boundary Layer Turbulence”
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